- First quadrant (A)
⇒ Angles = 0o – 90o
⇒ All = all values are positive. - Second quadrant (S)
⇒ Angles = 90o < θ ≤ 180o
⇒ Sin = the positive values only for sine and cosecant. - Third Quadrant (T)
⇒ Angles = 180o < θ ≤ 270o
⇒ Tan = the positive values only for tangent and cotangent. -
Fourth quadrant (C)⇒ Angles = 270o < θ ≤ 360o
⇒ Cos = the positive values only for cosine and secant.

From the picture above , we can clearly see the relationship between sine and cosecant , cosine and secant , tangent and cotangent. Since they are in reverse relationship , then we just need to memorize the values of sine , cosine , and tangent. The values of cosecant , secant , and cotangent can be calculated by their related trigonometry. For example , we can calculate the values of csc 45o by using the values of sin 45o.
Table for Trigonomeric Values of Special Angles
From the table below , we can see that the value of sines are started from 0 to 1 to 0 to 1 to 0. And the opposite , the values of cosine are started from 1 to 0 to 1 to 0 to 1. The pattern must be 0−½−½√2−½√3−1−½√3−½√2−½−0.
– | 0o | 30o | 45o | 60o | 90o | 120o | 135o | 150o | 180o |
sin | 0 | ½ | ½√2 | ½√3 | 1 | ½√3 | ½√2 | ½ | 0 |
cos | 1 | ½√3 | ½√2 | ½ | 0 | -½ | -½√2 | -½√3 | -1 |
tan | 0 | 1/3√3 | 1 | √3 | – | -√3 | -1 | -1/3√3 | 0 |
– | 210o | 225o | 240o | 270o | 300o | 315o | 330o | 360o |
sin | -½ | -½√2 | -½√3 | -1 | -½√3 | -½√2 | -½ | 0 |
cos | -½√3 | -½√2 | -½ | 0 | ½ | ½√2 | ½√3 | 1 |
tan | 1/3√3 | 1 | √3 | – | -√3 | -1 | -1/3√3 | 0 |
We suppose that you have memorized the trigonometric values for the angles of (0o – 90o). Then you’re asked for calculate sin 150o and cos 135o. For answer this question , there are two methode :
- You must remember the table above and the pattern.
If you dont not completely memorize the values , you can create auxiliary table like the tabel below.
0o 30o 45o 60o 90o 120o 135o 150o Next , you should memorize the pattern of trigonometric values.
⇒ For sine = 0 − ½ − ½√2 − ½√3 − 1 − ½√3 − ½√2 − ½ − 0.
⇒ For cosine = 1 − ½√3 − ½√2 − ½ − 0 − ½ − ½√2 − ½√3 − 1.– 0o 30o 45o 60o 90o 120o 135o 150o sin 0 ½ ½√2 ½√3 1 ½√3 ½√2 ½ cos 1 ½√3 ½√2 ½ 0 -½ -½√2 -½√3 Well , according to the table we made , we can see that :
sin 150o = ½
cos 135o = -½√2The first try may seem still complicated , but trust me if you are already familiar with the pattern then you will immediately know the value without having to make the auxiliary table.
- You should understand the concept of related angles.
⇒ For angles of (90 ± a) and (270 ± a) remember this :
sin = cos , cos = sin , tan = cot , cot = tan , sec = cosec , cosec = sec ;
The mark (positive and negative) is adjusted according ASTC.
⇒ For ngles of (180 ± a) and (360 ± a) remember this :
sin = sin , cos = cos , tan = tan , cot = cot , sec = sec , cosec = cosec ;
The mark (positive and negative) is adjusted according ASTC.Now , back to the problem.
sin 150o = sin (90 + 60)
⇒ sin 150o = cos 60
⇒ sin 150o = ½Note :
The angle of 150o is in second quadrant (sine and cosecant are positive) , then sin 150o has positive value.
“sin” changes into “cos” because we use the formula for angles of (90 + a).cos 135o = cos (180 – 45)
⇒ cos 135o = – cos 45
⇒ cos 135o = -½√2.Note :
The angle of 135o is in second quadrant (sine and cosecant are positive) , then cos 135o has negative value.
“cos” still be “cos” because we use the formula for angles of (180 – a).For alternative solutions , we can use the formula for angles of (90 + a) to answer the second problem.
cos 135o = cos (90 + 45)
⇒ cos 135o = – sin 45
⇒ cos 135o = -½√2.Note :
the angle of 135o is in second quadrant (sine and cosecant are positive) , then cos 135o has negative value. “cos” changes into “sin” because we use the formula for angles of (90 + a).

Salah seorang pakar dan konsultan pendidikan yang kini mengabdikan hidup menjadi guru di pedalaman nun jauh di pelosok Indonesia.