Soal Latihan Dan Respon Jumlah Dan Hasil Kali Akar-Akar

Gambar Gravatar
Soal latihan Matematika ini dikumpulkan untuk menolong siswa mempelajari matematika menurut topik atau materi tertentu. Soal opsi berganda ini berisikan beberapa seri yang disusun menurut versi soal dan tingkat kesulitan. Pada bab ini , topik yang mau kita diskusikan yakni jumlah dan hasil kali akar-akar persamaan kuadrat. Target dari latihan ini yakni siswa sanggup mengunakan rumus jumlah dan hasil kali akar-akar persamaan kuadrat untuk mengakhiri soal-soal persamaan kuadrat yang diberikan dan mengerti desain tersebut untuk mengakhiri soal-soal aplikasi yang lebih kompleks.

Bacaan Lainnya
  1. Jika x1 dan x2 yakni akar-akar dari persamaan kuadrat x2 + 4x − 12 = 0 , maka nilai dari x12 + x22 yakni ….
    A. 30
    B. 40
    C. 50
    D. 60
    E. 65
    Pembahasan :
    Dik a = 1 , b = 4 , c = -12

    Rumus jumlah akar-akar persamaan kuadrat :

    x1 + x2 = –ba

    Rumus hasil kali akar-aka persamaan kuarat :

    x1 . x2 = ca

    Jika jumlah akar dipangkatkan dua akhirnya yakni :
    ⇒ (x1 + x2)2 = x12 + x22 + 2x1.x2
    ⇒ x12 + x22 = (x1 + x2)2 − 2x1.x2
    ⇒ x12 + x22 = (-ba)2 − 2(ca)
    ⇒ x12 + x22 = (-41)2 − 2(-121)
    ⇒ x12 + x22 = 16 + 24
    ⇒ x12 + x22 = 40

    Jawaban : B

  2. Akar-akar dari persamaan x2 + 3x − 10 = 0 yakni x1 dan x2. Nilai dari x12 − x22 adalah …..
    A. 21
    B. 24
    C. 28
    D. 30
    E. 32
    Pembahasan :
    Dik : a = 1 , b = 3 , dan c = -10 , D = 9 − 4.1.(-10) = 49

    Kita penyesuaian bentuk :
    ⇒ x12 − x22 = (x1 + x2) (x1 − x2)
    ⇒ x12 − x22 = (-ba) (±Da)⇒ x12 − x22 = (-31) (±491)
    ⇒ x12 − x22 = -3 (±7) 
    ⇒ x12 − x22 = ± 21.

    Jawaban : A

  3. Jika akar-akar dari persamaan x2 − 5x + 4 = 0 yakni x1 dan x2 , maka nilai dari x13 + x23 adalah …..
    A. 54
    B. 65
    C. 70
    D. 80
    E. 85
    Pembahasan :
    Dik a = 1 , b = -5 , c = 4.

    Jika dimodifikasi :
    ⇒ (x1 + x2)3 = x13 + 2x12.x2 + x1.x22 + x12.x2 + 2x1.x22 + x23
    ⇒ (x1 + x2)3 = x13 + x23 + 3x12.x2 + 3x1.x22
    ⇒ x13 + x23 = (x1 + x2)3 − 3x12.x2 − 3x1.x22
    ⇒ x13 + x23 = (x1 + x2)3 − 3x1.x2 (x1 + x2)
    ⇒ x13 + x23 =  (-ba)3 − 3(ca)(-ba
    ⇒ x13 + x23 = (-(-5)1)3 − 3(41)(-(-5)1)
    ⇒ x13 + x23 = 125 − 3(4)(5)
    ⇒ x13 + x23 = 125 − 60 
    ⇒ x13 + x23 = 65. 

    Jawaban : B

  4. Jika akar-akar dari persamaan x2 – 2x + 6 = 0 yakni x1 dan x2 , maka nilai dari x14 + x24 yakni ….
    A. -8
    B. -4
    C. 2
    D. 4
    E. 8
    Pembahasan :
    Dik a = 1 , b = -2 , c = 6.

    Berdasarkan rumus jumlah dan hasil kali :

    ⇒ (x12 + x22)2 = x14 + 2x12.x22 + x24

    ⇒ (x12 + x22)2 = x14 + x24 + 2x12.x22
    ⇒ x14 + x2 = (x12 + x22)− 2x12.x22
    ⇒ x14 + x2 = (x12 + x22)− 2(x1.x2)2
    ⇒ x14 + x2 = [(x1 + x2)2 − 2x1.x2]− 2(x1.x2)2
    ⇒ x14 + x2 = [(-ba)2 − 2(ca)]− 2(ca)2
    ⇒ x14 + x2 = [(21)2 − 2(61)]− 2(61)2 
    ⇒ x14 + x2 = (-8)− 72
    ⇒ x14 + x2 = -8

    Jawaban : A

  5. Jika akar-akar dari persamaan 2x2 – 3x + 8 = 0 yakni x1 dan x2 , maka nilai dari x12 + x22 adalah…
    A. -234
    B. -214
    C. -194
    D. 234
    E. 214
    Pembahasan :
    Dik a = 2 , b = -3 , c = 8.

    Jika jumlah akar dipangkatkan dua akhirnya yakni :
    ⇒ (x1 + x2)2 = x12 + x22 + 2x1.x2
    ⇒ x12 + x22 = (x1 + x2)2 − 2x1.x2
    ⇒ x12 + x22 = (-ba)2 − 2(ca)
    ⇒ x12 + x22 = (32)2 − 2(82)
    ⇒ x12 + x22 = 94 − 8
    ⇒ x12 + x22 = -234

    Jawaban : A

 

Share ke Facebook >>Share ke Twitter >>
Cafeberita.com yakni blog mengenai materi belajar. Gunakan Kolom Search atau pencarian untuk mendapatkan materi mencar ilmu yang ingin dipelajari.
Temukan Kursus Bahasa Inggris di Bekasi untuk Menguasai Bahasa Inggris dengan Cepat 1

Salah seorang pakar dan konsultan pendidikan yang kini mengabdikan hidup menjadi guru di pedalaman nun jauh di pelosok Indonesia.

Pos terkait